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The polyhedral boron halides are a series of cluster compounds 
with the formula BnXn, « = 4 or 8-12 when X = Cl and n = 7-10 
when X = Br. They are of interest because they form an entire 
series of molecular polyhedral species that have only In framework 
electrons, two fewer than the 2« + 2, n > 4, that are indicated 
for optimal deltahedral framework bonding by framework electron 
count-structural correlations.1'2 Presumably, by analogy to the 
differences in chemistry observed between 16-electron transi­
tion-metal complexes and their more common 18-electron coun­
terparts, the "electron hyperdeficient"3 boron monohalide clusters 
should possess properties or reactivities that are unusual in com­
parison to the chemistry of electron-rich polyhedra like the borane 
anions or carboranes. 

Of the boron halides the eight vertex species, B8Cl8, has had 
a particularly interesting history. The first indication of the 
existence of B8Cl8 was from an X-ray structural determination 
of the product formed in the thermal decomposition of neat B2Cl4. 
This product had originally been formulated as -B12Cl11.

4 After 
recrystallization from, or possibly reaction with, BCl3, however, 
the molecular formula of the compound then present was estab­
lished as B8Cl8.

5 The experimentally obtained structures of the 
framework atoms of both the compound reported as B8Cl8 and 
its reduced analogue B8H8

2- are dodecahedral; the framework 
geometries are strikingly similar.6"8 

One of the reasons that virtually nothing is known of the 
chemistry of B8Cl8 is that the method of synthesis has been un­
clear.9'10 To date, the only known source of octachlorooctaborane 
is the thermal decomposition of neat B2Cl4. By all accounts the 
yields of the eight vertex cluster obtained from this reaction have 
been "very low".11'12 

We wish to report the synthesis of B8Cl8 in good yield (88%) 
and to communicate the first examples of the chemical reactivity 
of octaboron octachloride. During many reactions conversion of 
the eight-atom framework to a nine-vertex product occurs, which 
may help to explain some of the confusion surrounding the earlier 
experimental results. 

Octaboron octachloride is readily synthesized by the thermal 
decomposition of dilute B2Cl4, 20% by weight in CCl4, at 100 0C. 
The choice of solvent is important since in other solvents, e.g., 
BCl3 and SiCl4, the course of the decomposition differs. 

Boron-11 NMR spectra (28.9 MHz) obtained very early in the 
reaction show only one resonance, that due to B2Cl4, at 62.5 ppm 
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deshielded from external BF3 etherate. After 90 min at 100 0C, 
a second absorption at -46.7 ppm (BCl3) becomes apparent. After 
ca. 75 h at 100 0C, a third resonance at -65.1 ppm (B8Cl8) is 
resolved (Figure IA). Over the course of 2 weeks, a fourth 
resonance at -58.3 ppm (B9Cl9) slowly becomes evident (Figure 
IB).13 

Boron-11 NMR data indicate that the diamagnetic portion of 
the purple-black air-sensitive solid obtained upon opening the 
sealed tubes, removing solvent, BCl3, and any unreacted B2Cl4 

is composed of B8Cl8 (95%) and B9Cl9 (5%), Figure IC. Inte­
grations of spectra like Figure IB indicate that B8Cl8 is formed 
in 88% of the amount expected if the stoichiometry of the reaction 
is 8B2Cl4 -«• B8Cl8 + 8BCl3. As obtained in Figure IC, the purity 
of the compound is typically 90%.14 Octaboron octachloride is 
slightly volatile in a standard vacuum line, and fractionation yields 
material that is 99+% pure. 

One of the surprising aspects of the chemistry of B8Cl8 is the 
ready conversion of the eight vertex species to nonaborane de­
rivatives. For example, thermal decomposition of B8Cl8 in CCl4 

at 200 0C yields B9Cl9 as well as BCl3 and a tan intractable 
polymer. After 30 min, the reaction of B8Cl8 with a 5-fold excess 
of terf-butyl lithium, followed by removal of the lithium alkyl,15 

yields a product that is most readily shown to be the peralkylated 
derivative of a nine-atom cage by mass spectrometry. The mo­
lecular ion for B9(Z-Bu)9, m/e 611, is the highest mass ion observed, 
accompanied by ions at the expected ratios for B9(Z-Bu)8

+, m/e 
554, and B9(Z-Bu)7

+, m/e 497; the experimental isotopic ratios 
are as expected. The base peak of the spectrum occurs at m/e 
524, which corresponds to B9(Z-Bu)8 - 2CH3. 

The interaction of B8Cl8 with excess liquid trimethylaluminum 
yields (CH3JnB9Cl9-,, n = 0-4, partially alkylated derivatives of 
again the nine-membered cage. The mass spectra of these de­
rivatives as well as the boron NMR spectra (resonances 76-96 
ppm deshielded from external BF3 etherate) are fully in accord 
with the formulation of these species as alkylated 2« framework 
electron derivatives. For example, the molecular ion region of 
(CH3J4B9Cl5 contains the following ions (m/e (intensity)): 
(CHj)4B9Cl5

+, 336 (10%); (CH3)3B9C15
+, 321 (68%); 

(CH3)2B9C15
+, 306 (100%). 

Another surprising aspect of the chemistry of B8Cl8 is the avidity 
with which it accepts hydrogen. For example, if M-pentane, which 
has been shown to be pure by GLC techniques, is added to a 
sample of the solid material resulting from the thermal decom­
position of B2Cl4 (Figure IC), an immediate reaction occurs at 
ambient temperature.16,17 Octaboron octachloride is not observed 
in the solution, and 1H NMR indicated the formation of pentenes, 
ca. 4 mol/mol B8Cl8. The pentenes formed are identified by GLC 
techniques (OV-101 column) or by bromination of the hydro­
carbon fraction followed by separation and identification of the 
dibromopentanes produced. Both 1- and 2-pentene are formed. 
If the B8Cl8 is rigorously purified by fractionation prior to the 
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Figure 1. Boron NMR spectra (28.9 MHz): (A) B2Cl4, 20% weight in 
CCl4, after 75 h at 100 0C (the resonances at -65 sh, -62, and -47 ppm 
are due to B8Cl8, B2Cl4, and BCl3, respectively); (B) after ca. 14 days 
at 100 0C; (C) after removal of all very volatile material from the 
reaction (the resonance at -58 ppm is due to B9Cl9). 

addition of pentane, no reaction is observed at ambient temper­
ature. However, the formation of pentene commences upon raising 
the temperature to 100 0C. 

In all of these reactions dihydrogen (material not condensable 
at -196 0C) is unobserved. The identity of all of the boron-
containing products has not, as yet, been unequivocally proven; 
however, mass spectrometric and NMR evidence is consistant with 
the presence of partially hydrogenated nonaboron chlorides, e.g., 
B9H4Gs. Boron trichloride and HCl are also formed. 

In conclusion, the chemistry of the polyhedral boron halides 
has been selected for study because these clusters lack the requisite 
or "magic" numbers of electrons (2n + 2) associated with the 
frameworks of many of the most stable deltahedral compounds,1,2 

and it seemed most likely that unusual reactivity patterns might 
emerge. 

We believe that some of the reactions above do illustrate that 
the polyhedral boron halides may well prove to have a most 
interesting and diverse chemistry. In particular they illustrate 
that at 100 0C B8Cl8 can accept hydrogen from pentane, liberating 
pentene in the process. The activation of CH bonds18 in this system 
is under further study. 
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When a paramagnetic metalloporphyrin complex is oxidized 
to a ir-radical cation, the opportunity exists for magnetic inter­
actions between the unpaired electrons of the metal and the ligand. 
There is little understanding of the nature of this phenomenon, 
and also, there is conflict in the literature over the characterization 
of species that display it. For example, [Cu"(TPP)]+ (TPP = 
tetraphenylporphyrinate) and related copper porphyrins have been 
variously described as S = 0 or S = 1 systems.1"4 Experimentally, 
three different states can be distinguished: (a) the diamagnetic 
S = O antiferromagnetic state, (b) the S = 1 ferromagnetic state 
having a spin-only magnetic moment ns = 2.83 MB. an<^ (c) the 
independent spin S = 72 , S = ' / 2 state having ns = 2.45 ^8-

5 The 
distinction between b and c does not appear to have been con­
sidered previously. Unexpectedly, the present work reveals that 
a noninteracting S= ' /2 , S= ' / 2 state should be considered for 
the solution phase but that a strongly antiferromagnetically 
coupled 5 = 0 state exists in crystalline [Cu(TPP-)] [SbCl6]. A 
further intriguing case is provided by the pair of closely related 
complexes Fem(OC103)2(TPP-) and [Fe111Cl(TPP-)] [SbCl6].

6'7 

Although the latter was previously taken to be an iron(IV) com­
plex,8 both are high-spin iron(III) radical cations, bringing together 
an S = 5 /2 metal and an 5 = ' / 2 ligand. The interesting ob­
servation is that the perchlorate complex behaves like an inde­
pendent spin 5 = 5/2, S = ' /2 system, whereas the chloride complex 
is a strongly coupled overall 5 = 2 system. Moreover, the magnetic 
behavior of both complexes differs from that of compound I of 
horseradish peroxidase (HRP I), an S = 1 iron(IV)/5 = ' / 2 

porphyrin radical, which has been interpreted in terms of a weak 
antiferromagnet (-7 ~ 1.5 cm"1).9 

Synthetically, we are finding that selected organic radicals allow 
metalloporphyrin radical cations to be isolated in analytically pure 
crystalline form, many for the first time. Treatment of Cu(TPP) 
or Cu(TTP) (TTP = tetra-p-tolylporphyrinate) with tris(p-
bromophenyl)amminium hexachloroantimonate10 or thianthrenium 
perchlorate,11 respectively, in dichloromethane gives good yields 
of purple crystalline [Cu(TPPO][SbCl6] and [Cu(TTP-)] [ClO4].

12 
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